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CLASSIFICATION THEORY 
FOR NON-ELEMENTARY CLASSES I: 

THE NUMBER OF UNCOUNTABLE MODELS 
OF qJ E Lto,,,o. PART A 

BY 

S A H A R O N  SHELAH'  

ABSTRACT 

Assuming that 2", < 2",*~ for n < to, we prove that every t~ ~ L~,~ has many 
non-isomorphic models of power N. for some n > 0  o r  has models in all 
cardinalities. We can conclude that every such ~ has at least 2"~ non-isomorphic 
uncountable models. As for the more vague problem of classification, restricting 
ourselves to the atomic models of some countable T (we can reduce general 
cases to this) we find a cutting line named "excellent." Excellent classes are well 
understood and are parallel to totally transcendental theories, have models in 
all cardinals, have the amalgamation property, and satisfy the Los conjecture. 
For non-excellent classes we have a non-structure theorem, e.g., if they have an 
uncountable model then they have many non-isomorphic ones in some N, 
(provided 2"m < 2"m+ 0. 

w Introduction 

In his list of questions H. Friedman [4] quoted the following question (due to 
Baldwin): Can a sentence ~0 E L(Q) have exactly one uncountable model? 

In [11] we answered this question for ~b E L . . . .  (Q). We proved there that if 

I ( N l , d / ) < 2  *' then there exists a model for the sentence O of cardinality N2 
(I()t,~O) is the number of non-isomorphic models of ~0 of cardinality )t). We 
proved this assuming V = L, or more exactly ON,. 

For ~O ~ L . . . .  (Q) which satisfies I(N1, ~O)< 2 *,, we obtained a clear picture of 

the structure of the models in MI assuming ON,. 
Our aim here is to continue the work we began in [11] in two directions. The 

* The author thanks the United States-Israel Binational Science Foundation for partially support- 
ing this research by grants. 
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first, and more important, is to check what happens in higher cardinalities; the 

second direction is to minimalize the set theoretical assumptions. We shall prove 

a classification theorem for ~b ~ L~,.~ (the main result was announced in the 

notices and in [11], p. 147 and lectured on at the ASL meeting in Jerusalem, Fall 

75). A preprint of this paper was circulated in 1977. 

Everywhere in this paper we assume that the language L is countable. 

We think that the non-structure proofs can be used separately in other 

contexts. Weak diamonds (introduced in Devlin and Shelah [3]) are used 

throughout. This includes Theorem 1.3 (where, assuming 2"" < 2", and failure of 

No-amalgamation of our class K, we show K has no universal model in N1 and has 

2", non-isomorphic models in N,). This was continued in Avraham and Shelah [1] 

for Aronszajn trees D and in Grossberg and Shelah [6] for locally finite groups. 

This applies as well to Lemma 6.2 (generalized in [17] and then in [6] which deals 

with a similar, somewhat harder situation) and Theorems 6.4 and 6.14, where we 

build many models in A §247 using failure of amalgamation in A. In all cases, if we 

weaken our interpretation of "many"  the proofs would become easier. 

Furthermore, we think that some other methods of this paper will be useful 

elsewhere. In particular, the way we analyze a model of power )t (an existing 

one, or one we want to construct) using n-dimensional diagrams seems to have a 

general flavour and really it was used in the classification of countable first order 

theory, together with a variant of the generalized symmetry lemma. 

Our proofs can be modified to ~b E L .... (Q) as in [11]. In this paper we prove 

the theorem for L .... only; for L~,.,o(Q) everything should be reproved. This is 

possible with a minor modification: in Theorem 1.l required from K the 

additional requirement that small sets (in the sense of Q) will be countable, and 

instead of the usual elementary extension to work with elementary extensions 

which do not increase small sets, i.e., 

if M < N and M ~ -'1 Qx~b (x, b) then N ~ x~b (a, b) implies a E M. 

Since our proofs here (for $ E L~,.,) are complicated enough, and in [17] we 

deal with a more general setting than L,,.~,(Q), we omitted the explicit proof 

from our present paper. In [17] we proved, for example: If for $ there exists a 

unique model of cardinality 1~1, then there exists a model to ~b of cardinality i~2 ; 

this theorem is proved in ZFC alone without any set theoretic assumptions. In 

[17] we also start to prove the main theorem from here for the more general 

context. We do the first step, i.e., we draw from I(N1, K) < 2 ~' (and 2 "0 < 2"') the 

suitable conclusions. 

The cardinals p.(n) are defined in Theorem 6.4 but it suffices to say that for all 
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practical matters Ix (n)=  2"-, e.g., Ix(n)"o=2"-, IX(I)=2",, and a proof of the 

consistency of Ix (n )<  2 N- seems quite hard, and, of course, G.C.H or --10 # 

implies tx (n) = 2"-. 

MAIN THEOREM 0.1. Assume 2N-< 2 ""+' [or all n < w. For each ~0 ~ L .... 

which has an uncountable model at least one o[ the [ollowing holds: 

(a) For some n > O, IX (n ) <= I(N,, ~ ) ( = number o[ non-isomorphic models of tp 

in N,). 

(b) ~0 has models in every infinite cardinality, and i[ it is categorical in some 

A > N,,, then it is categorical in every IX >= 1,I1. 

PROOF. First we shall prove a theorem: (assume (Vn < ~0)2"-<2".+'). 

THEOREM 0.2. (1) For every countable complete first order theory T, as in 

Theorem 1.1 let K be the class of atomic models o[ T, and assume that K has an 

uncountable member, then at least one of the [ollowing holds: 

(a) For some 0 <  n < w, I(N,,K)>= Ix(n), 

(b) K is an excellent class. 

(2) Suppose K is an excellent class. It has models in every power, it has the 

amalgamation property (moreover, i[ Mo < M1, M2 are in stable amalgamation 

then over M1 t) M2 there is a primary model). Also i [ K  is categorical in some 

uncountable cardinal then it is categorical in all uncountable cardinals. 

Theorem 0.2 is proved as follows: as we can assume 2"~ I ( N I , K ) <  2 M,, by 

Theorem 1.4 we have some conclusions of [11]. 

Now if K is excellent (see Definition 5.4) then by Theorem 5.6(2) K has 

models in every cardinality, by Conclusion 5.8(2) the amalgamation property 

holds, and by Theorem 5.9 K is categorical in all uncountable cardinals, or in 

none of them. 

On the other hand, if K is not excellent, by Claim 5.5(2) there exists a natural 

number 2_-<n(K)<w,  and by Lemma 6.2 and Theorem 6.4, I(N,~K~,K) >- _ 

IX (n (K)). So we have finished proving the above Theorem 0.2, but our intention 

was to prove Theorem 0.1. Let K1 be the class of models of qJ and assume (a) of 

Theorem 0.1 fails. 

By Theorem 1.1, there are a class K of the atomic models of some complete 

countable first order T and an uncountable M*, M * E  K1, such that K and 

K2 = { N : N  =-=~M*} have the same number of models of each power, up to 

isomorphism. So I(I,I,,K)<= I(l~,,~b)< Ix(n) for 0 <  n < w, hence by Theorem 

0.2 (1) K is excellent. Hence for every IX, 1 =</(IX, K ) =  1(IX, K2)<= I(IX, KI). As 
for categoricity of K1, if I(A, KI )=  1, as we know I(A, K2) > 1 and K2 C_ K~ 
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necessarily all models in K, of power A are L . , -equiva lent  to M*, hence by [10] 

this holds for every /z _-> A, hence 

{M EK2:IMI>=A}={M ~K,:JMI>=A}, 

hence fo r / z  => A, I ( /x ,K, )=  I(/x, K2)= I(p.,K)= 1. 
If No < / z  < A, I(/x, K,) > 1 then for some M E K, - K2, II M II =/x. As easily K2 

is axiomatized by one sentence in L .... (by [11] 6.1(A), p. 145)for some 0 E L ..... 

MI = 0, M* ~--1 0. Allying the above to ~ A 0, it has a model of power A. So K1 is 

not categorical in A, contradiction. 

CONCLUSION 0.3. Suppose 2"- < 2 "-+' for each n. If ~b E L .... has at least one 

uncountable model, then it has at least 2"'. 

PROOF. Since /z(n)=>2 "1 for every n _--> 1 (if (a) of Theorem 0.1 holds) and 

models of distinct power are not isomorphic (if (b) of Theorem 0.1 holds). 

REMARK. Since the main step in Theorem 0.1 is Theorem 0.2, i.e., the 

theorem for the atomic models of T, we shall refer to it as to the main theorem. 

A central place in the proof is occupied by n-dimensional diagrams. We now 

explain how we can arrive at such diagrams naturally, when we approximate a 

model by structures of smaller cardinalities. Suppose we want to describe a 

model M of cardinality A (for proving, e.g., existence or uniqueness). A 

reasonable way is by an increasing continuous elementary chain M~ (i < A), 

M = U~<~Mi, [[M~ 1] K h. Now instead of describing M, we now have to describe 

M~+I over M~ (i.e., assuming M~ is given), and our gain is that liMi+~ [[ < A. Now we 

have a pair (M ~, M ~ of models of cardinality A~, so we choose an increasing and 

continuous elementary chain (MI,M ~ (i < h~), M ~ = Ui<~,Ml, ][M~]] < A~. Now 

M~+~ are for each i we have to describe 1 assuming M~, M ~ o given; this is, Mi+l 
essentially, an amalgamation problem. After n stages we should reconstruct M, 
assuming Mw (w _C n,I w I< n) are given, Mw f) Mo = M ~ o  (and more relevant 

conditions). 

So the diagram becomes complicated, but the cardinality smaller. So for each 

A and n we have a describing problem. The main point is that if for no + 1 and 

each tz < A, we get an answer, we get it for A and no, so it su_flices to get an 

answer for one cardinality and for all n. 

Remember that Morley in his categoricity theorem does not use such an 

inductive process; rather he proves that every model is saturated, which is a 

more global approach. We believe other problems can be attacked in this way. 

We used a similar method in [12]. 
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Let us review the paper and explain the structure of the proof. In w we shall 

quote results from [11] and reprove the main theorem from there assuming a 

weaker set theoretical assumption than the ~ , , .  The main theorem is Theorem 

1.3, which says if I(~tl, $ ) <  2", then the class K satisfies the No amalgamation 

property. In Theorem 1.4, assuming 2 M'< 2 "l and K has the No amalgamation 

property, relying heavily on [11] we introduce our basic stability machinery (i.e., 

we quote the needed facts on the rank and introduce a substitute to stationariza- 

tion) which will be used in the rest of the paper. So after Theorem 1.3, 

I (~h ,$ )<2  ~, is assumed. We also introduce a dimension of a type p for 

(A, I M ], I M [) which will help us to measure a replacement for the saturatedness 

of M. 

Note that there exists a sentence $ E L .... which is categorical in every 

cardinality and the model is even not (L~,,~,NI) homogeneous (see Marcus [9]). 

So we should find a replacement, and these are the full models over good sets 

which will be introduced in w and for their definition we need the above- 

mentioned dimension. This is continued in w where we define "(M,A) is 

A-full". This is a generalization of (M,a)a~A is A-saturated. However, we 

restrict ourselves to good A (see below) and our existence and uniqueness 

proofs go by induction on the power (in w and we shall succeed in doing this in 

all powers only for excellent classes (note that even a first order T does not have 

a saturated model in every power, but a countable totally transcendental T has). 

We also look at other possible generalizations of stationarization (weak 

stationarization, triples in stable amalgamation and the analysis of p E DA for 

good A). 

Last but not least, in w we introduce good sets, which essentially are sets over 

which amalgamation holds. (For countable sets this is the exact definition.) Be 

careful: not every set is good! Really the search for good sets is a central theme 

of this work [this may sound like a silly warning, and I insert it only because 

some excellent mathematicians succeed in reading the paper without realizing 

it]. So the No-amalgamation property implies that the universe of a countable 

model is a good set. Note that for a saturated uncountable model M, the 

isomorphism type of (M,a~)N<~ is determined by the isomorphism types of 

(M, an)n<k for k < to, but nothing of this sort holds for models of $ E L . . . . .  We 

believe that amalgamation bases (though not good sets as defined) will play a 

role in other parallel investigations. 

In the third section we introduce the n-dimensional diagram {Ms:s E I} 
(usually I = ~ (m)  or I = ~-(n)). Looking at the way they arise (as explained 

above) the order on U I is important. However, as for stable theories we have a 
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symmetry lemma; generalizing it we get that the order is not important (see 

Lemma 3.5). Note also that for our machinery to work we demand (in good 

systems) various sets to be good and triples to be in stable amalgamation. 

In the fourth section we define the properties for ( ,~,~-(n))-good systems 

which naturally arise from our purposes: existence, uniqueness and also non- 

uniqueness (i.e., U s ~  ~,~Ms is not an amalgamation base), and goodness 

( U {M~ : s E ~ (n)} is a good set). We usually restrict ourselves to full models so 

that the system may become unique, hence uniqueness and non-uniqueness 

become complementary. We then describe how to decompose a ()t,l)-good 

system to an increasing continuous sequence of (p., I • {0,1})-good systems for 
/z <)t.  

In the fifth section we define "excellency" ( = having all positive properties in 

1%, i.e., goodness, existence and uniqueness). We prove the existence and 

uniqueness of full models in excellent classes; moreover, the notion of excellent 

classes is similar to the notion of elementary classes from the following points of 

view (see Theorem 5.9): K has the amalgamation property, for every ,~ it has a 

model. Moreover, it has a full model, and this full model is unique (also, it will be 

universal and homogeneous for K). Furthermore, K satisfies the Los conjecture: 

it will be categorical in all A > 1% or none. So if K is excellent we have fulfilled 

possibility (b) in the Main Theorem. We are left with (a); we shall prove that the 

negation of (a) implies K is excellent, i.e., if for every n < to, I(~, ,~O)</~(n),  

then K is excellent. How to prove this? The central idea in this paper is to 

transfer properties of models of cardinality I~, to properties of countable 

models, and then back from countable models to models of higher cardinalities. 

We do it to use the only method to construct atomic models we know, and this is 

the Henkin omitting types theorem which, unfortunately, holds only for 

countable models (this is also the reason why we assumed L countable); more 
specifically, for no the goodness property becomes the negation of non- 

uniqueness property and existence property becomes true. Using w in 

Theorems 5.1 and 5.2 we transfer the positive properties up. Now if the class is 

not excellent we want to prove (a), i.e., that there exist n, 0 < n < to, such that 

I(l,r If K is not excellent there is a first n(K) such that, for 

n(K)-dimensional cubes of countable models, the "suitable" amalgamation 

property fails. For this case we have w using heavily the weak diamond. We 

transfer this property up, i.e, we prove that for (n ( K ) -  1)-dimensional cubes of 

full models of power l~t, the amalgamation fails. We continue to decrease the 

dimension and increase the power of the full models till we prove that the usual 

amalgamation fails for full models of power / t  = d~ Next, we prove first 
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that if there exists Mo, M~, M2 full models of cardinality h § such that M~, M2 

cannot be amalgamated over M0, then K has 2 ~++ = 2 ".<K) non-isomorphic models 

of power h ++; this is not hard and is similar to what was done in Theorem 1.3. 

For the case when the amalgamation property of full models of cardinality h + 

holds, we are in a more complicated situation and the 2 ~++ non-isomorphic 

models are constructed by approximations, models of power h (see the 

explanation after Theorem 6.4). 

The main problems are: 

PROBLEM 1. Prove Theorem 0.1 in ZFC; a beginning has been done in [17]. 

CONJECTURE 2. Suppose $ E L,l.o, is categorical in one h => "to,,, then it is 

categorical in every cardinal >"to,,. 

Notice that the last problem is interesting provided there is n < w such that 

I(~, ,  ~b) _->/z (n); otherwise it has a positive answer by the Main Theorem (we are 

in case (2)). 

Notice that in this case, even if I(Nt,q,)= 2",, Theorem 1.1 still holds. By 

remembering that "1 ~, is the Hanf number of L,  .... which implies the existence of 

an Ehrenfeucht-Mostowski model of ~b of cardinality .t ~, with dense skeleton, 

then this model realizes only countably many L,l.o,-types, which was the only 

need of the assumption I(N1, ~b)< 2", in Theorem 1.1. 

The author wishes wholeheartedly to thank Michael Makkai for doing a 

thorough job as a referee; and Rami Grossberg for many more corrections, 

added explanations, for expanding or writing up proofs which were in a concise 

manner or which were asserted trivial. 

w 1. Review of the results o n  ~t~l, eliminating the diamond, and stationary types 

As this paper is a continuation of [11], we quote here the required results, so 

that the reader need not refer back to [11]. One of these results is that w.l.o.g, we 

can replace the class of models of a sentence ~0 E L . . . .  by the class of atomic 

models of a first-order complete countable T, which has uncountable models (see 

Theorem 1.1). 

In Theorem 1.3 we show that if the l%-amalgamation property fails, then K 

has 2", models of power N~ and has no universal model in N1, assuming 2 .0 < 2", 

(and not the diamond). This is done using the weak diamond principle; and by it 

we can replace the diamond by 2"0<2 . '  everywhere in [11]. Note that even 

"categoricity in N] of K does not imply the N0-amalgamation property" is 
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consistent with ZFC + 2 ~,, = 2"' (as explained in the introduction of [11]). Note 

that if we just want to prove "I(N], K)  is large" the proof is considerably simpler, 

and the present proof is continued in w 

The theorem most used later is Theorem 1.4. Remember  that in [14] the 

notions "tp (d, A ) does not fork over B C_ A ", "tp (/~, A ) is the stationarization of 

tp(/~,B)" where B C_A (which for superstable theories are equivalent to 

equality of rank) play important roles. We want a parallel in our context. As we 

already have a suitable rank (see [11], section 4) we can use equality of ranks. 

Unfortunately, our ranks do not have the extension property, so we restrict 

ourselves to such types (called stationary). Note tp( tLM) is always stationary 

(remember we are always interested in tp (d ,A) ,  only if A U d is atomic). This is 

done in Theorem 1.4 (1) under the assumption I ( ~ ,  K)  + 2"' < 2",. We also draw 

a conclusion which will be needed in w over any countable M there is a 

countable extension universal over M (see Theorem 1.4 (2)). 

Definition 1.5 and Theorem 1.6 are from a previous work ([14], chapter IV) 

which deals with generalizations of prime models. Definition 1.7 introduces a 

concept of dimension of stationary type corresponding to a triple (A,,A2,A3) 

when the interesting case is ( A , M , M )  when A _C M. This is a measure to the 

"saturatedness" of the model M according to stationary types over M. This will 

be used in the definition of full model in the next section which will be our 

substitute to saturated models in elementary classes. 

NOTATION. For a class K of models, let I(h, K)  be the number of models in K 

of cardinality A, up to isomorphism. Let KI be the class of models of 4' E L .. . . .  

THEOREM 1.1. Assume 2 "o + I ( ~ ,  4') < 2 '~,, then there is a complete countable 

first order theory T such that, letting K be the class of atomic models of T: 
(i) if K~ has an uncountable member, so does K; 
(ii) if I('~.,, K,) >= 1 then I(3~,, K) >-_ 1; 

(iii) for every A, I(A, K)  _-< I(A, K1) and for some uncountable M E K,,  for every 
A, I(A, K)  = I(A,{N ~ K, : N  -- ~.~M}) ; 

(iv) in T, every formula is equivalent to an atomic formula, and T has no 

function symbols ; 

(v) note that K is categorical in ~o and this model has a proper elementary 

extension in K. 

PROOF. By [11], to get the required conclusion using lemma 2.5 and lemma 

3.1 in [11], p. 132, it is sufficient to find an uncountable model of 4' in which only 

countably many L . . . .  -types are realized. This follows from theorem 2.3 and 

lemma 2.1 in [11], p. 129. So from now on we shall assume 
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HYPOTHESIS. K is the class of atomic models of a countable complete T 

which has uncountable models. For notational simplicity T has no function 

symbols and every formula is equivalent to a relation. 

CONVENTION 1.2. Let (S be a fi-saturated model of T (this model is not a 

member of our class); a model will be an atomic elementary submodei of (S (if 

not designated otherwise) (see [14], p. 7 as to why we do not lose generality) so 

q~ means fS~ ~0. Let A , B , C  denote atomic subsets of ~, a ,b ,c ,d  denote 

elements of such sets, and d, b, & d finite sequence of elements from such sets 

(this is equivalent to: a (d) realizes in (S over g an atomic type). Models will be 

denoted by the letters M,N (perhaps with index) always in K. We shall not 

distinguish strictly between a sequence and its range, and write d ~ A instead of 

~ C A .  

Let tp(/7,A)= {r162 C A ,  ~ [ 6 , a ] } .  

For A C_ B we say that tp (a, B) does not split over A if for every/~ E B and 

E B, tp(/~,A) = tp ( f ,A)  implies tp(a ^/~A) = tp(a ^ ~,A). 

K has the ,~-amalgamation property /f whenever M < M~ (l =0,1)I[M[[ = 

]] M, ]] = • then there is N, and elementary mappings f,, f, : M~ ~ N, f0 [ M = f, [ M. 

Remember that by our notation M,M~,N are from K. 

In [11], w167 we actually used the hypothesis 2"" < 2", only, except in [11], 3.4, 

where we assumed O.,; here we prove also this assuming 2 ~o < 2 ~, only. 

THEOR.EM 1.3 (2'%< 2"'). Suppose K does not have the no-amalgamation 
property. Then I ( ~ , K )  = 2"'. Also K has no universal member in N~. 

PROOF. To clarify the proof, we first prove the second statement, hence 

I(Mi, K ) >  1. So let M* be a model of cardinality N~, so w.l.o.g. ]M*] = r By 

the hypothesis there are countable M < Mt (I = 0, 1) which exemplify the failure 

of the no-amalgamation property. We shall show that M* is not universal. 

For this we define by induction on a < o9, models M~ for ~/E ~ 2, such that: 

(i) M~ is countable, ]M~]= ~o(1 + 10/)), 

(ii) T/~ v implies M~ < M~ (~/~ v stands for: , / i s  an initial segment of v), 

(iii) for limit ~, and 7/E~2,  M~ = I,.J~<sM~r~. 

For a = 0 and a limit there is no problem. For successor a =/3 + 1, for each 

~/E ~ 2 choose an isomorphism f~ from M onto M~ (remember K is categorical 

in no), and define for I = 0,1 a function f~ and a model M~^,~ such that f'~ extends 

f~ and is an isomorphism from M~ onto M,^,>. 

Now, for 7 / ~ ' 2 ,  let M~ = U . . . .  M~r~ ; if M* is universal, for each 7 / ~ ' 2  

there is an elementary embedding g~ of M~ into M*. By [3], 6.~, as 2 ~~ < 2",  
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there are distinct - q , v ~ ' 2 ,  and a<o~ l ,  wa=a such that ~[a=ura, 0 =  

~(a)# u(a)= 1 and g, tM.r~ = g~ rM.r . .  This is a contradiction, as 

(g.,,tM,.,,,,,+l))f".:,,,~,:Mii-*M*, (g~tM.r,,,,.l,)f',~,o,:Ml"~M * 

show M, Mo, M~ can be amalgamated. Contradiction. 

Now let us prove I(Nj,K)= 2",. By [11], 2.1(B)we can assume Mt are chosen 

such that 

(*) {tp(8, [M I):d E [M~ [} are maximal and distinct 

[i.e., for any N, MI < N, and d E N, for some d'  E M~, tp (~, I M I) = tp (~', t M I); 

but {tp(a, lMI):d ~[Mol}~{tp(a, lMl):a ~[M,I}] (we could find Mo, M~ such 

that {tp(&lMI):~i ~ [M~ ]} are incomparable). 

We call a set S C_ w~ small if there is a function F, such that for every -q E ~'2 

for some h:~ol-->2"", {a <o~ l : a  E S ~ F(h I a ) = 7 / ( a ) }  contains a closed 

unbounded set. By [3], 3.1, 4.1(2) (essentially) the small subsets of ~Ol form a 

normal ideal, which is nontrivial (when 2 "o < 2"'). 

So, in particular, this ideal is l, l rcomplete (notice the analogy to the ideal of 

non-stationary subsets of w 0. Hence by Ulam's theorem there are pairwise 

disjoint non-small sets S~ C_ o~ (a < to 0. We let M, MI, Mr, f~ be as above. Now 

let us define a function F. If ~5 < w~, "q, u E 28, o~6 = 6, h : 6 ~ 6, h an elementary 

embedding of Mr into M., and the diagram 

U 
h 

M r > M.^(o) 

can be amalgamated, then F(-q, v,h)= 1, otherwise F(7/, v,h)= O. 
As S. is not small, there is a sequence p. E ~,2, such that for every ~, v E ~'2, 

h : o~1--0 oJl, {i < w, : F(~ r i, v r i, h [ i) = p, (i)} A S. is stationary. (Formalistically, 

we should make F into a function from {h : h :~ 2--02 • 2 • a for some a} into 

2 = {0,1}.) 

Now for every set I C 001 we define ~i E ~,2 : 

.o~(i)={p~(i), iES~, a~ l ,  

O, i ~  U So or i@S~, a~I. 

We shall now show that Mr, (1 C_ ~ol) are pairwise non-isomorphic. So suppose 
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h:M, ,~M, j  is an elementary embedding, 3,car, T E l  and we shall get a 

contradiction. 

Let S = {6 < to~:h [6 is into 6, 6 = (o6}. Clearly S is a closed unbounded 

subset of to,. For each 6 ~ S n S,, '0j(6) = 0, ~/,(6) = 0~(6); by 0~ 's definition 

S ' = { 6  E S, : F ( r  h [6, r/, r&h [ 6 ) =  0~(6)} 

is stationary, so we can choose 6 E S N S '  and let " 0 = ~ [ &  u= '0~I6 .  If 

p~(6)= 0 then '0,(6) = 0, F(~,v, hf6)=O, and it is easy to check that 

M~l/r (8+1) 

U 

hf~ 

can be amalgamated (use h r to(6 + 1)), contradicting the definition of F( remem- 

bering "0,(6)= "0,(6) = 0). So necessarily p~(6) = 1, so "0~(6)= 1, F("0, u, h I 6 ) =  
1, hence by F 's  definition 

M.~((,) 

U 

M, ' M.^(o) 
hi8 

can be amalgamated, but using h rto(6 + 1)we see that also 

Mn^(, 

U 

ht'8 

can be amalgamated, but this contradicts (*) for the following reason. 

Let N < My, N1 be the images of M,, M,^(1) by h resp. As the diagram before 

the last can be amalgamated (in K, of course) there is a model N*, M.^(o) < N* 

and an elementary embedding f : M,^(o)--~ N* extending h f 6 ; and let No be the 

image of M,^(o~ by f. By (*), {tp (~i, N):  ~i E ~ }  (l = 0,1) are maximal and distinct. 

Suppose there is & E No such that p = tp (do, N)  C {tp (& N):  ~ E N~}. But by the 

choice of M.^(o), tp (~io, My) is realized in M.^(o), say by d~, so ~i~ realizes p. So for 
some a < w~, N~ U {~} C M~jr~. Hence, by the maximality of {tp(ci, N):  ~i E 
N~}, p belongs to it, contradicting the choice of p. If there is ~il ~ N1 such that 

p = tp (~i~, N)  C {tp (& N):  d E No}, we can get a similar contradiction. 
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REMARKS. (I) Trivially there is a family of 2 N, subsets of cot, no one a subset 

of another. So in fact we have proven there are in K 2 "' models of cardinality N~ 

no one elementarily embedded into another. 

(2) We can similarly prove that any E~-equivalence relation on ~'2 which 

satisfies the parallel of the non-N0-amalgamation property has 2 ", equivalence 

classes. 

For an abstract version and applications, see Avraham and Shelah [1]. Also, in 

the present paper, there are proofs which go deeper into the matter: in Lemma 

6.2(3) (there we find a way to circumvent the maximality of the N~ in a similar 

situation) and really in Theorem 6.4 (there we build 2 "++ models of cardinality 

A ++, using non-uniqueness of amalgamation in h). In both cases it is much 

harder to get the maximal number than to get quite many. 

By [11] (omitting (y)  of definition 4.1 (c) on p. 135, which just simplifies 

matters), 

THEOREM 1.4. Suppose I ( ~ ,  K)  < 2 ~', 2 ~'' < 2 ~'. Then : 

(1) (a) For every complete type p = t p ( & A ) ( A  tO 4 atomic, of course), an 

ordinal R (p ), called its rank, is defined. The rank is < ~ ,  is monotonic 

[i.e., for A ' C_ A,  R (tp (4, A ')) _-> R (p)], is preserved under automorphisms of 

~, and for every such p there is a finite B C_ A such that R (p ) = R (tp (~i, B )). 

Note that this holds for any B',  B C B'  C A. 

(b) We call p stationary if there are a finite set B and a model N D_ B such 

-that B C_ A and R ( t p ( & B ) )  = R ( p ) =  R(tp(4 , [NI )  ). Note that if p is 

stationary then p does not split over B and for any atomic C D A there is 4' 

realizing p such that C U 4' is atomic and R( tp (~ i ' ,C) )=  R(p) ,  we call 

tp (4', C) the stationarization of p over C, denote it by pc, and it is unique. 

(c) The symmetry property holds: If tp (dr, A),  l = 0,1 are stationary then 

R ( t p ( 4 , , A  U d , , ) ) = R ( t p ( 4 , , A ) )  if and only if R(tp(6o, A U 4 , ) ) =  

R (tp (d,,,A)). 

(2) For every countable M, there is an N, M < N, IINI[ = IIMII such that: any 

N', IIN'II----IINII, M < N', can be elementarily embedded into N over M, i.e., the 

embedding is the identity over M. An  N as above is called universal over M (for not 

necessarily countable M).  

(3) For any countable M, if 4, b E M ,  p =tp(4, /~)  is stationary, there are 

d, E M (n < ~o ) such that {4, : n < to} is an indiscernible set over b in M based on 

p, where we use the following definition: 

We say I is an indiscernible set over B in A based on p if: 

(a) I is a set of sequences of a fixed finite length ; 
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(b) p is a stationary type over some C C_ B ; 

(c) B U I C _ A ;  

(d) for every g E I, tp (g, B U (I - {g})) is a stationarization of p ; 

(e) for every d ~ A ,  for some finite dC_l, for every 8 E 1 - J ,  

tp (~?, B tO d tO (I - {~})) is a stationarization of p. 

(4) Now if M~ is increasing (i < a >= ~o), (~ ~ M~+l, tp(g~,M~) a stationarization 

of a fixed p (so p E S m (B ), B C_ M,,), then {~ : i < a } is an indiscernible set over B 

in M~ based on p. 

(5) I l l  is an indiscernible set over B in A based on p then I is indiscernible over 

B, i.e., for each n, for all distinct ~?~ E I (l = 0 , . . . ,  n), tp(8,;..  .^ 6, ,B) is fixed. 

REMARK. It is not clear whether "in A "  is necessary. 

PROOF. (1) (a) This rank is defined in definition 4.2 in [11] (but we omit part 

(3') of definition 4.1(c)). By lemma 2.1(B) in [11], K is N0-stable (see definition 

3.5(B) in [liD, and by lemma 4.2 (A ~ C)in [11] R(p )  < oo; by lemma 4.1(C)in 

[11] this implies R (p) < oJj. The other properties mentioned are easy to prove. 

(b) First notice that being a stationary type is preserved by automorphisms of 

~. Assume that p = t p ( & A )  splits over B, i.e., there exist ?, d E A such that 

tp(g ,B)  = tp (d ,B)  and 4~(:~;g)^ m ~b(2 ;d )~p ,  therefore by monotonicity of 

rank and R ( p ) =  R( tp (&B)) ,  say a, the following holds: 

c~ = R (p) = R (tp(& B ) tO {6 (x ; e)}) = R (tp(& B ) tO {m 4, (2, d)}). 

Let f be an automorphism of (S such that f I B  = id,~ and f (d )  = ~, hence 

o~ = R ( f ( p ) )  = R ( t p ( a , B )  tO {4~(g ; ~)}) = R( tp(& B) tO {--14'(g ; ~)}); 

now by definition of the rank function this implies R ( t p ( & B ) ) =  a 4-1, con- 

tradiction. 

Given C atomic assume R ( p ) =  a, let pc be the set 

pc = {4,(~; ()" 4,(g; Y)E/~, e ~ C, R ( p  tO {4,(g ; e)}) = ~}. 

Let B , N  witness the stationarity of p, i.e., B C_ A is finite, and B _C N, and 

R [ p l  = R [ p [  B] = R[ tp(g t ' ,N) l  for some 4'. Define 

pb = {r  ~b(g; ~) E L, ?. E C, R[(p  [B)  tO {4~(g; ()}] = a}. 

We shall prove that p~-is consistent, a complete type over C, C U ti' is atomic 
for ti' realizing pb and R[pb] = a. By the finite character of the rank (see [l l])  

this implies pc = p}-. As the definition of rank implies that there is at most one 

stationarization, we finish. 



Vol. 46, 1 9 8 3  NON-ELEMENTARY CLASSES. PART A 225 

Let us show that p[. is consistent: For any �9 = {~O~(s i < n} C pk. denote 

6 = ~,~ C,. .  .^ 6",_,. Because ( U B is atomic and N a model, there exists 6' E N 

such that t p (C ,B)= tp (U ,B) .  As R[p]=R[tp(d,B)] it follows that ~ ' =  

{~O~ (.~ ; U~):i < n } C_ tp(a, I N I), therefore it is consistent. 

By acting on (~ with an automorphism which fixes B and replaces C by 6' also 

is consistent, hence p~. is consistent. To show the completeness of p.~ is a 

similar argument: let 4,(s ( C C C )  be such that 4,(s  and 

d' (x; c) E P ['; as before there exists ~' E N satisfying tp(6, B) = tp(6', B), 

finally we have 4, (s ; g') ~ tp (~, ] N [) and 4, (~, e') ~ tp (a, [N I), contradiction. 

Similarly to the consistency we can prove that R[p~] = a. It is obvious that pb 

extends p. Now also if d '  realizes p~. then C U d'  is atomic: as for every C E C 

there are 6 ' ^ d " E  Nrealizing tp (6^a ' ,B) ,  and N is atomic. 

(c) In [11] theorems 5.1 (B ~ C) and 5.4 we proved the symmetry property 

over models (i.e., when A is a model) and it is easy to check that symmetry over 

models implies symmetry over sets when we deal with stationary types. 

(2) We shall define the universal model over M as a union of a countable 

elementary chain {M, : n < w}, Mo = M, assume {Mk : k < n} is defined, and 

define M, to be a countable model extending M,_~ and containing finite 

sequences realizing all the complete types over M,_~ (this set is countable 

because, as we said before, by the assumptions of this theorem K is Mo-stable). 

Such M, exist, as K has the i~,,-amalgamation and is closed under increasing 

unions. Now we shall prove that N = U ,<o,M, is a countable universal model 

in K over M. That it is in K is obvious, because each M, is from K and it is clear 

that K is closed under unions of elementary chains. 

Universality: Let N ' D  M, N ' E  K, [[N'II = ~,,; we shall define an embedding of 
N'  into N over M ( = identity over M). Denote {a, :n < co} = IN'[ and we shall 

define a corresponding sequence {b, : n < co} in N such that for every n < w 

(*), tp((ao- �9 �9 a,_,), ]M I) = tp((b,,. �9 �9 b,_,), ]M ]). 

We prove it by induction on n. Assume we have proved (*), and define b, E N 

such that (*),+, will hold. Let M'  be a prime model over M U {ao, . . . ,  a,_,} (the 

existence of M'  is proved in lemma 4.4 in [11]). Because of its primeness, w.l.o.g. 

M'  _C N' and there is k < co such that M'  is embedded, say, by f into Mk such 

that mU{bo,.. . ,b,_,}cf(m')CMk, f I m = i d  and f(a~)=b for O<=l<n. 
Consider the image of the type p = tp(a , ,M' )  under f:f(p); it is included in 

some {tp(c, Mk): Mk U c atomic} (this holds because of the amalgamation prop- 

erty); by the definition of Mk+~, tp(c,M~) is realized in M~+~ by b,. Now it is 

trivial to check that (*),+~ holds. 
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(3), (4) are easy. 

(5) Just like [14], lemma I2.5 (p. 11). 

Recall from [14], ch. IV. 

DEFINITIONS 1.5. (1) We say p = t p ( / ~ , A )  is isolated if there is p =  

(~, ~i)E p, such that each/~' satisfying q~ realizes p. We say B is constructible 

over A if A C_B, B = A  U{di :i < c~}, and for each i, t p ( & A  U { d j : j <  i}) is 

isolated. We say B is atomic over A if tp (6, A ) is isolated for each/~ E B. We say 

M is primary over A if M is constructible over A. 

(2) We say p = tp(/~,A) is F"-isolated if it is isolated or for some g E A, 

tp(6,g) is stationary, and tp(/~,A) is its stationarization. We define F ' -  

constructible similarly. 

THEOREM 1.6. (1) If over A there is a primary model M it is unique (over A, of 

course) and it is prime over A, i.e., for every N, A C_ N, M can be elementarily 

embedded into N over A. 

(2) if tp(g,A) is isolated, A atomic, then A U g is atomic, l f  M is atomic over 

A, M countable, then M is primary over A. If M is primary over A, then it is atomic 

over A. If B is constructible over A, then B is atomic over A. 

DEFINITION 1.7. Let p C S"  (B) be stationary. The dimension of p for 

(A, ,A2,A3)  is the first cardinal K, such that for some C C_ A2, I C[ = K, there is a 

stationarization q E S"  (A, U C) of p, but it is not realized in A3 and we assume 

always that A~ U A2 U A~ is atomic and B C_ A, U A2. So we can replace A2 by 

A,  U A2. 

REMARK. This notion is used in Definition 2.7 in the next section; to 

understand it, look there. 

w Goodness and fullness 

We define and investigate here the notion of good sets (in Definition 2.1, 

Lemma 2.2, Claims 2.3 and 2.4, and Conclusion 2.5 (1)), which will be used 

extensively later. For a countable A, A is good itt over A there is a prime 

[primary] model if[ over A there is a universal countable model (the definition 

for uncountable A has technical importance only). Remember that good A 

satisfies what our intuition (built on first-order model theory) many times tells us 
is always true. 

In Definition 2.7, and Lemma 2.8 (3), (4) we deal with the situation when M is 
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A-full over A, which is our substitute for (M,a)a~A is A-saturated, but we 

require A to be good. In Lemma 2.12 (2) we deal with the A-fullness of the union 

of an increasing chain (compare with: (see [14] III, theorem 3.11) if Mi is 

increasing, (for i < 8 ) e a c h  M~ is K-saturated K(T)=<cf 8 implies U~<,M~ is 

K-saturated). To achieve this we deal again with "stationarization". The notion 

we gave in w is not totally satisfying as it does not always exist. We suggest 

"weak stationarization" q of p E DA in Dc where (A,C) satisfies the 

Tarski-Vaught condition, if p C_ q, q does not split over some finite subset of A 

(see Definition 2.9 (1)). Now if A is good every p ~ DA does not split over some 
finite subset of A, and then q exists, is unique, and the definition is compatible 

with the previous one, etc. (see Lemma 2.10(1)). A strongly related fact is 

Lemma 2.2(1) which says that if tp(d ,A)EDA,  A good, then for some /7, 8, 

_C/~'̂  8, tp(/7,A) is isolated and tp(8,A U/~) is the stationarization of tp(8,/~). 

So every p E DA is analyzed using two well-behaved cases. This also analyzes, 

for good A, the weak stationarization of p ~ DA. 

We say A,B, C is in stable amalgamation if A is good, (A, C) satisfies the 

Tarski-Vaught condition, and for every b ~ B tp(b, C) is the weak stationariza- 

tion of tp (b,, A ). We almost always amalgamate in this way and we deal with this 
notion in Definition 2.9 (see Lemma 2.10 (2) (existence), Lemma 2.10 (3), (4) 

(connection with stationarization and dimension), Lemmas 2.11, 2.12 (1)). 

As we said in the introduction, we want to work with generalized amalgama- 

tion properties and using existence of models of cardinality less than A in the 

class K to construct models of cardinality A; for this we shall use existence of 

generalized amalgamation properties (we have not yet defined them). We know 

already from what was said in the introduction that our amalgamation properties 

will depend on two parameters: a cardinality K and a natural number n (n is the 

dimension of the diagram, and K the cardinality of the models in the diagram). 

We shall want to find a condition on the models in the diagram which will 

imply existence of a model M and a possibility to embed the other models in the 

diagram into M. A sufficient condition is, for example, existence of a universal 

model over the union of the models in the diagram. For every cardinality K we 

shall look for an assumption which will imply existence of such a model; 

fortunately, in w in Theorems 5.1 and 5.2, we shall prove that if generalized 

amalgamation holds for every K < A and for every k _-< n + 1, then the property 

holds for A and n. Therefore it suffices to prove the property for No and every 

natural number. So instead of taking care of existence of a universal model over 

an arbitrary set, it is enough to have a condition which implies existence of a 

universal model over countable sets; but this does not hold generally. For this 
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goal we shall introduce in Definition 2.1 the suitable notion which we shall call a 

good set (not necessarily for countable sets). In Lemma 2.2 and Claims 2.3, 2.4 

we shall prove some properties of good sets; for example, we conclude for a 

countable set A that: A is good iff there exists a countable model Na, NA D A 
which is universal over A. Conclusion 2.5 (1) is another characterization of good 

sets (for countable sets); Conclusion 2.5(2) has technical value. Definition 2.7 is 

the important definition of a full model (the substitute for the use of saturated 

model in Morley's theorem), where the second requirement (homogenicity) 

follows from the others; this trivial fact is proved in Lemma 2.8. 

What is our aim? We want to have theorems, for example, of the form: I[ 
there exists a model of cardinality 3. (in the class K) + an additional assumption, 

then there exists a model of cardinality A +. For example, the main result of [ l l]  

is of this form, we proved it there for tO E L . . . .  If I(81, tO) _-> 1 and I(i~1, tO) < 2", 

then 1(1~2, tO) _-> 1. We shall reprove this result in Conclusion 2.13 (when, with the 

exception of demonstrating our method, we gain from the point of view of the 

set theoretical axioms we use - -  the only additional axiom to ZFC is 2 N,, < 2"'); it 

is an open problem whether the assumption of 2"~ 2 N, is necessary. 

How shall we prove Conclusion 2.13? Since the class K is closed under the 

union of elementary chains, it is clear that it suffices to prove that every model of 

cardinality 8~ has a proper elementary extension. Let M be the given model 

from K of cardinality N1, let{Mr : c~ < oJ1} be countable models from K such that 

M = [..J . . . .  Ms and we want to construct a model N @ K by constructing a 

continuous increasing elementary chain of countable models in K, N, (a < w~) 

such that No is a proper elementary extension of Mo not included in M, and 

choose by induction N~+~ to be an elementary extension of Mo+~ and N~. 

Now we are left with just one problem: What implies the possibility of 

choosing the models N, as above? To overcome this difficulty we define in 

Definition 2.9(2) under what conditions a triple of sets A, B, C is in stable 

amalgamation (think temporarily of these sets as models, A is an elementary 

submodel of C and B _D A ). In Lemma 2.10(2) we have the existence we wanted 

(substitute A by any atomic countable model which includes Mo+I U N~ [exists 

by the amalgamation property]; for B choose a proper countable elementary 

extension of A in K ;  N~+1 will be [(B) and C is M). Later we shall use this triple 

in more general situations. This is the reason for not requiring A, B, C to be 

models in the definition. 

The other facts proved in this section make possible our induction on c~ < oJi, 

to take care of limit ordinals, and we show the relation between full models and 

stable amalgamation which will be used in later sections. 
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From now on, for the rest of the paper, we assume 

HYPOTHESIS. The conclusions of Theorem 1.4 hold. 

DEFINITION 2.1. A set A ( C fS, of course, and atomic) is called good if ~i E A, 

~ ( 3 2 ) r  implies r163 belongs to a complete type over A which is 

isolated. For any A let Da = {tp(& A) :  A U ~i is atomic}. 

LEMMA 2.2. Let A be good. 

(0) If  A is countable then there is a countable primary model over A. 

(1) p ~ Da iff there are b, 6, tp (6 ,A)  isolated, tp (&A t.) 6) is a stationarization 

of tp(&6) and p = tp (8 ,A)  for some d C_b t_J& 1n fact we can have ~ =& If  

A C_ M, d E M realizes p, then we can choose 6, ~ E M. Also every p E DA does 

not split over a finite subset of A. 

(2) For each El, if A U gt is atomic, then A t2 d is good. 

(3) IDa I -  < [AI+I~,, and DA has the density and amalgamation properties 

(density - -  if ~ ( 3 s  ~ ( s  then ~o(2,d)E p for some p E DA ; amalgamation - -  

if tp(gt,,^bo, A ) E  DA, tp(gt,^ F,,A ) E  DA, and tp(~io, A ) = t p ( ~ i , , A ) ,  then for 

some 6 ,  tp (4, ^ 6, ^ F,, A ) E Da and tp (rio ̂  60, A ) = tp (~i, ̂  61, A )). 

(4) I f  A is countable, there is a countable model NA which is (DA, NO)- 

homogeneous over A (i.e., each p E DA is realized, and even for every F~ E NA, 

each p E Dau~ is realized). This model is unique, and universal over A (i.e., every 

N, A C_ N, IINII <- I%, can be elementarily embedded into NA over a ). O f  course for 

each F~ ~ NA, t p ( & A ) E D a .  

We first prove 

CLAIM 2.3. For a countable A,  if over A there is a countable universal model 

Na, then DA is countable. 

CLAIM 2.4. If  DA is countable then A is good. 

PROOF OF CLAIM 2.3. For every p E Da, choose ~i realizing it; A U ti is 

countable and atomic, hence there is a countable N, A U d C N, so N can be 

elementarily embedded into Na over A, so NA realizes p. Hence IDa I =< II Na II =< 

No. 

PROOF OF CLAIM 2.4. If A is not good and q~(s exemplifies this, let 

A = {a, : n < to}, and define r ~i,) for ~7 E ~>2 by induction on l(r/) such that 

r >(s >)= q~(s ~ ( 3 2 ) ~ , ( s  a,  E A ,  

~ N s  [q~,^<,>(s ~i,^<,)--~ q~, (2; d,)] for l = 0 , 1  
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and ~ --1 (3g) [q~ .̂ ~,,~(Y. 8 ,  <̂,,>) ̂  ~ .^~.(g. 8 ~^<,>)]. and q~. (g, ~9.) isolate a type in D~; 

and a~ E d, when 1 < l(rt). This is easy and if d,, realizes {q~r,(:~,d,,r,): n < w}, 

for r /E~ then { t p ( d , , A ) : r / E ~ 2 }  is a subset of DA of cardinality 2"", so 

IDol=2".. 

PROOF OF LEMMA 2.2. First we assume that A is countable and at the end of 

the proof of this lemma we shall explain how to get rid of this assumption. 

(0) Let Ta be the first-order theory T expanded by constants ca for every 

a ~ A .  
Since A is good, TA is an atomic theory; now apply Henkin's omitting types 

theorem and obtain a countable atomic model M~ of the theory Ta. By the 

definition of Ta, the reduct Ma of M,~ to L(T) is atomic over A. Since Ma is 

atomic over A and countable by Theorem 1.6(2) it is primary over A. 

(1) Suppose p ~ DA, then for some d, p = tp (~ ,A)  and A U d is atomic. As 

A U d is atomic there is a mode[ M, A U d C M. As A is good, by Lemma 

2.2(0), there is a model M'  primary over A. By Theorem 1.6(1), M'  is prime over 

A hence can be embedded into M over A hence w.l.o.g. A C_ M'C_ M. Let 

8 C 6 C M, then M'  U 6 is atomic, so for the type tp (~, M')  the rank is defined 

and it is stationary. Choose a finite B C_ M' such that R [tp(6,M')] = R [tp(6,B)]. 

By Theorem 1.6(2) we know that tp(/7,A) is isolated (/~ is an enumeration of B), 

and by Theorem 1.4(1) (b) tp (~?,/~) is stationary. By the monotonieity of the rank 
(Theorem 1.4(2) (a)), tp(6,A U b) is the stationarization of tp(6,/7). So we have 
the "only if" direction. 

For the "if" part assume d C_/7 U 6, tp(/7,A) isolated and tp(6,A U/7) is a 

stationarization of tp(~?,6). As tp(/7,A) is isolated, A U 6 is atomic. As 

tp(? ,A U/7) is a stationarization of tp(6,b), by Theorem 1.4(1) (b) (second 

sentence) ( A U / 7 )  U ?  is atomic. This implies A U d C A U ( / T U 6 ) =  

(A U/~) U ? is atomic, hence tp(& A ) E  Da.  

Now letp E D a ,  assume p = t p ( & A )  and we shall find a finite B C A  such 

that p does not split over B. Let Ms, be primary over A, since A U ~i is atomic 

we can choose M_D A U ~i; without loss of generality we may assume that 

MA C_ M. By Theorem 1.4(1)(b) there exist a finite C C_ Ma such that tp (,~, MA ) is 

stationary over C; by the second part of Theorem 1.4(1)(b), tp (~i, Ma)  does not 

split over C. Since ~ E MA (c? an enumeration of C) by the last part of Theorem 

1.6(2) there exist a finite B C_ A and a formula q~(2, Y) such that ~0(2,/7) isolates 

tp (~, A ),/7 is an enumeration of B ; this clearly shows that tp (6, A ) does not split 

over /~ We claim that p does not split over B. Let d'--~,d"~EA be such that 

tp (d~, B)  = tp (d2, B)  and ~0(2, all), --n qJ(2, d2) E p ; since tp (,7, A ) does not split 
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over B we have tp (d~, C) = tp (d2, C). But since p is stationary over C, p does 

not split over C hence tk(s d,) E p(- - ) ,  ~(~, d:) E p, contradiction. 

(2) We want to apply Claim 2.4 so we have to prove that Dau~ is countable, 

but first we prove the countability of Da and this will follow from Claim 2.3 

provided we will be able to prove the existence of a countable universal model 

over A. By goodness of A take M'  countable primary over A ;  let Na be a 

universal countable model over M'  (exists by Theorem 1.4(2)). We claim that Na 

is the model we want. Let N_D A be an arbitrary countable model. Using 

Theorem 1.6(1) we can find N'  C_ N primary over A which is isomorphic over A 

to M', say, by f" N ' ~  AM'. As Na is universal over M'  we can extend f to an 

embedding of N into Na. So we have proved that Da is countable but we are 

interested in the countability of Dauc,, and this is true because we can define a 

one-to-one mapping from Dau~ into Da as follows: By the atomicity of A U ~i 

and the definition of DA for every /7 the following holds: 

tp(/7,A U ~i) E Dau~ r162 tp(~i^/7, A ) E  Da. 

(3) As before assume that A is countable. [On ] ~ I A [+ l~,, follows from the 

proof of (2) and Claim 2.3. The density is easy also; if ~3~r  d E A ,  by 

Definition 2.1 for some b, ~r and tp(b ,A)  is isolated, but this implies 

A U/7 is atomic, hence tp (5, A ) E DA. The amalgamation: as tp (~,,^/7o, A ) ~ DA 
by Da ' s  definition, A U d0 ̂ /~ is atomic, A is good by assumption, so by (2) also 

A U rio ̂ /7o is good, and let M~ be the countable primary model over A U d,, ̂ /7~4 

by the same argument let M, be the countable primary model over A U d~ ̂  (~. 

Let ~ < M~ be primary models over A U ~ and let M~ be the countable 

universal models over Mi. Choose fo an elementary mapping over A taking do to 

d~ (this can be done by equality of types over A). As ~ is primary over A U d~ it 

is possible to extend f.  to an isomorphism f~ from No onto N~. Now use the fact 

that K has the N0-amalgamation property (by Theorem 1.4(2)): M,, and M~ can 

be amalgamated over f~. By the universality of M*, M0 can be embedded by an 

extension of f~ into M*.  Let f2 D f~ be the embedding of Mo into M*,  denote 

/71 = f2(/7o) and this sequence has the required properties. 

(4) This follows directly from (3). 

Up to now we have dealt with countable A. For uncountable A note that we 

can define on A 1,10 functions such that any B C_ A closed under those functions 

is good and (B ,A)  satisfies the Tarski-Vaught condition (see Definition 2.6 

below). We can also find for each pair of formulas ~(~, ~), qJ(s ~?) functions F~(~) 

( / <  1(~?)) such that if / 7EA,  1=(3~) ~(s  and there is 6 such that ~ (3~)  
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(~#(s qJ(s ~(: ls163 -1 4~(~,/~)) then /~'= (F0(d),- . . ,F,~) ,(d)) 

satisfies this. If A '  C A is closed under all those functions A is not good, then A 

is not good. Similarly for the other properties. Now it is easy. 

CONCLUS|ON 2.5. (1) For countable A, A is good ift DA is countable. 

(2) If p has dimension K for (At,A2,A3), A~ UA3C_A2 and A2 is good and 

CA,  then p has dimension K for (A,,A,A~). 
(3) Suppose I is indiscernible over B in A based on p. If B U I C_ A _C C and 

A is a good set then I is indiscernible over B in C. Also if J C_ I, B U J _C C C_ A 

and C is a good set, then J is indiscernible over B in C. 

PROOF. (1) Easy, by Lemma 2.2(3) and Claim 2.4. 

(2) So let C C_ A, [ C [ <  K, p E S"  (B), B be a finite subset of A2, p stationary, 

and we should prove that the stationarization of p over B U A 1 U C is realized in 

A3 (this proves the dimension is => K ; it is obvious that the dimension is =< K). AS 

A2 is good, for every finite sequence d E A, we can find do E A2, d,, d2 such that: 

tp(d,,do)~-tp(d,,A2), t p (d2 ,A2Ud, )  is a stationarization of tp(d2,d0, d c  

d, U d2 (and of course A U d, U d2 is atomic). 

Let C* be U{do :d  @ C}, if K >no,  and C* = do where C = d (i.e., the set is 

equal to the range of the sequence). Now C*C_A2, I C * I <  K, hence by the 

hypothesis, the stationarization of p over B U A~ U C*, q, is realized by some 

/~ E As. We shall prove that tp(/~,A~ U/3 U C* U C) is a stationarization of p, 
thus finishing. It suffices to prove that if d E  C, K =no  f f  d =  d*, then 

tp(/~,A, U B U C * U  d) is a stationarization of p, or equivalently, of q. As 

d c d, u d2, do c_ C*, it suffices to prove for l = 0,1 that 

tp(/7,A, U/3 U C* U dr U ~+,) is the stationarization of p. For l = 0, remember 

that tp(d~,d,,)~-tp(d,,A2) hence (as doe C*, F ~ A3 C_ A2) tp(d~,do)~-tp(d,,A, U 
B U C* U/7) hence tp(d~,A, U B U C*)~-tp(d~,A, U/3 U C* U/~) hence 

tp(G, AI U /3 U C*)~-tp(b, AI U B U C* U dl). So tp(fJ, A~ U /3 U C*) has a 

unique extension in S"  (A1 U B U C* U d~), but p has a stationarization there, r, 

so r~(A, U B U C*) is also a stationarization of p (by monotonicity of rank), 

hence by uniqueness q C_ r, hence r = tp( /~ ,A,U/3  U C* U dr) (we used 

Theorem 1.4). So tp(b,A~ U B U C* U d~) is a stationarization of p. 
For l = 1 the proof is by the symmetry property (see Theorem 1.4 (1) (c)). 

(3) A similar proof. 

DEFINITION 2.6. The pair (A ,B)  satisfies the Tarski-Vaught condition (or B 

satisfies the Tarski-Vaught condition over A) if for every /~ ~ B, ti E A if 

~o [/~, d] then for some/~' E A, ~ q~[/)', d] (when B is atomic this is equivalent to 
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tp (6 ^ ti, th) = tp (/~'^ d, qS)). Notice (A, B) satisfies the Tarski-Vaught condition 
iff (A ,A  U B) satisfies it. 

DEFINITION 2.7. M will be called full over A (or the pair (M, A)  is full) if 
(1) A is good, A C_ M; 

(2) (M,a)a~A is (DA,~o)-homogeneous = M is (DA, l~o)-homogeneous over A 

[i.e., if d,,, all,/~o E M, tp (do, A ) = tp (d~, A ) then for some/~, C M, tp (~o ̂ /~., A ) = 
tp(d~^5~,A) and every p ~DA is realized in M]; 

(3) M is weakly full over A, where: 

(a) M is weakly A-full over A if A C_M, and for every stationary 

p E S " ( B ) ,  B C_M, B finite, the dimension of p for (A, IMI,IM[)is 
_->A, 

(b) if A =]]MII we omit it. 

DEFINITION 2.7A. " M  is A-full over A "  if M is weakly A-full over A and 

(1), (2) above holds. 

REMARK. Weakly A-full is a substitute for A-saturated; but we shall not 

pursue this notion for its own sake here. 

LEMMA 2.8. (1) If (A,B),  (B, C) satisfies the Tarski-Vaught condition, and 
A C_ B then (A, C) satisfies the Tarski-Vaught condition. 

(2) If A~ (i < a) is increasing and (B,A,) [(A,,B)] satisfies the Tarski- Vaught 

condition for each i then (B, U,<~A,) [(U,<~A,, B)] satisfies the Tarski-Vaught 
condition. 

(3) (M, A ) is full iff A is good and (M, A ) is weakly full. 
(4) If M is weakly full over A, B C_ A then M is weakly full over B. If M is full 

over A, B C_ A, B good then M is full over B. 

PROOF. (1), (2), (4) trivial. 

(3) The implication ~ is trivial. As for ~ ,  from Definition 2.7 we miss only 

part (2) and this is easy by the characterization of DA in Lemma 2.2 (1). 

DEFINITION 2.9. (1) If (A, C) satisfies the Tarski-Vaught condition, p E Dc is 

the weak stationarization of q E Da if q C_ p, and p does not split over some 
finite subset of A (see Lemma 2.2 (1)). 

(2) The triple A, B, C is in stable amalgamation if A U B U C is atomic (but 
this follows from the rest), A is good, (A,C)  satisfies the Tarski-Vaught 

condition, and for each G E B, tp(/~,C U A)  is the weak stationarization of 
tp(/~A).  
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REMARK. Note that A, B, C is in stable amalgamation iff A, A U B, A U C is 

in stable amalgamation. 

LEMMA 2.10. If  A is good and (A, C) satisfies the Tarski- Vaught condition, 

then : 

(1) Any  q E D,~ has a unique weak stationarization p E Dcua, and if q is 

isolated so is p, if q is stationary then p is its stationarization over A U C. If  
q = tp(a  ^/~,A), t p ( a , A )  isolated, tp(/~,A U d) the stationarization of tp(/~,a), 
p = tp(a'^/~',A U C), then tp(/~',A U 8') is the stationarization of tp(/~',d'). I fq  

does not split over B C_ A, B finite, then p also does not split over B (i.e., we 

strengthen the "some" in Definition 2.9(1)). 

If q,, = tp(a  ^/~,A), q~ = t p ( & A ) ,  p~ ~ Dc, their respective weak stationariza- 
tions, po = tp(a  '^ b', C), then p, = tp(a ' ,  C). If  A~ (i < a )  is increasing continu- 
ous, each A~ ( i + 1 < a) is good, p~ = tp(&A~), p~ + l a weak stationarization of p~ 

(so (A,A~+1) satisfies the Tarski-Vaught condition), then U~<,p~ is a weak 

stationarization of po. 

(2) For any B, A C_ B, there is an elementary mapping f, f t A  = id, B = Dora f, 

such that A, f (B) ,  C is in stable amalgamation. 

(3) If  A, M, C is in stable amalgamation (A C_ M, A C_ C), B a finite subset of 
M, p E S r" (B) stationary, and the dimension o]: p ]:or ( A , M , M )  is K, then the 

dimension of p for (C, M U C, M)  is K. 

(4) For A,  M, C as above, if C* C_ M, ~ E M, tp (a ,A U C*) is stationary, then 
tp (a ,A U C tO C*) is its stationarization. 

PROOF. (1) Let q r DA and we shall define a type p with the required 
properties. 

Existence : Since A is good by Lemma 2.2(1) there is B C_ A finite such that q 

does not split over B. Define p to be the following set: 

p = {&(2;6) :~  E C U A , a  E A, tp(~ ,B)  = t p ( & B ) , t h ( s  q}. 

The consistency of p is proved exactly in the same form as the consistency of pc 

in Theorem 1.4(1) (b) using the fact that (A, A U C) satisfies the Tarski-Vaught 

condition; it is obvious that p does not split over B so p is a weak stationariza- 

tion of q over A U C. 

Uniqueness: Let pj, p2 be two distinct weak stationarizations from Dauc of q; 

let 4~(s and - -34, (~;6)Ep: .  By the choice of pl, p2 there exists B,, 

B.~ C_ A finite such that they do not split over them, respectively. Choose d E A 

such that tp(ti, B, U B2)= tp(6,B, U B:). By ~ ( ~ ; 6 ) E p : ,  m t h ( ~ ; d )  cannot 

belong to q (otherwise p~ would split over B~ U Bz), by the same argument 
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4 ' (x ;c )  E p2 ~ ~b(s  q;  together this is a contradiction to completeness 

of q. 

Isolation : Assume that q is isolated by the formula ~b.(s ; ~i) and we shall show 

that the same formula isolates the type p. Let p = tp (/7, A ) and q = tp (/7, A U C), 

assume that ~bo do not isolate p, hence there exists a cb ( s  such that the 

following holds: 

(*) ~3X[~, , (X;a)  ^ 6 ( ~ ; e ) ]  ^ 3X[~o(X;a)^ ~,(x;e)] .  

As (A,C)  satisfies the Tarski-Vaught condition, and ti E A, g E C, there is 

t?' G A such that 

(**) ~(3x)[~,,(x,a) A ~(X,e')l A (3g)[~Oo(X,a) A ~ ~(x; e')]. 

As t ? ' E A  either ,(y,,e')~q [hence q~(X, ti)F~C(x,c')] or ~,(y,,e')~q [hence 

~o(s d) F m q~ (x, c')], contradicting (**) in both cases. 

Stationarity: Now assume q is stationary and let p be weak stationarization 

over A U C. On the other hand, by Theorem 1.4(1) (b) the stationarization p~ of 

q over A U C exists and it does not split over some finite subset of A. Hence it is 

also a weak stationarization of q and by the uniqueness of the weak stationariza- 

tion p = p~. 

If q does not split over finite B _C A then also p does not split over B: this 

follows from the uniqueness of weak stationarization and the first paragraph in 

this proof. The other claims are easy to prove. 

(2) Let B={b~:i<o~}, and for every i (O) , . . . , i (n )<~ let 

q,o),....,,)(X,o)," �9 �9 x,,)) be the weak stationarization of tp ((b,0)," �9 �9 b,.)), A ) over 

A U C. By (1), {i(O),. . . , i(n)}C{j(O),. . . , j(m)}C_a implies 

q , o )  , , , ) (x , , , ) , . . . ,  x , , ) )  C_ q/co),. ,so,)(Xsto),"" ", xjo,)). 

Hence F = ~f U {q,o),...,,,)(X,o),'' ' ,x , , ) ) : i (0) , . . . ,  i(n) < a, n < to} is a complete 

type in the variables {x~ : i < a } over A U C. Let the assignment x, ~ b'~ satisfy F 

and let f be an elementary mapping which is the identity over A and maps/7 to 

/7'. It is clear that A, f(B), C are in stable amalgamation. 

(3) As the dimension of p for (A ,M,M)  is K, clearly the dimension of p for 

(C, M to C, M) is =< r. For the other direction, let C* _C M, B _C C*, C* I < K 

and it suffices to prove that the stationarization of p over C tO C* is realized in 

M. 

As the dimension of p for (A ,M,M)  is K, there is /7 E M which realizes the 

stationarization of p over A U C*. Suppose tp(/7, C tO C*) is not a stationariza- 

tion of p. Then there are ~ E C and 6 '  E C* U A such that tp(/7,t? ^ 6") is not a 
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stationarization of p, bu t  B C_ ~*. As A, M, C is in stable amalgamation, for 
some r i g A ,  tp(/7^ ?*, C) does not split over ti. Also (A,C) satisfies the 
Tarski-Vaught condition hence there is ~ 'E  A which realizes tp(G a), so by 

definition of non-splitting: 

(.) tp(/~ ̂  6 *^ e, a) = tp(/~ ̂  e *~ e', ti). 

As 6 'E  A, tp (/~,A U C*) is the stationarization of p, B C_ 6", also tp(/~,6' U ~*) 
is the stationarization of p, so by (*), tp(/7,6 U 6") is the stationarization of p, 
contradicting the choice of 6, 6"; hence tp (/~, C U C*) is the stationarization of p, 

so we finish. 
(4) The same proof as (3). 

LEMMA 2.11. (1) If A~ is increasing and continuous (i < a) and the triple A~, 
B, A~+1 is (when i + 1 < a) in stable amalgamation, then so is Ao, B, U,<oA~. 

(2) If A, B, C is in stable amalgamation B' C_ B, C' C_ C, then A, B', C' is in 

stable amalgamation. 
(3) If A~ (i < a) is increasing and continuous, similarly Bi, G (i < o~), and for 

each i the triple A ,  B~, G is in stable amalgamation, then so is U~<~A,, U~<~B,, 

U~<~G, provided that U~<,A~ is good. 

PROOF. (1) Let /~EB. For each i, tp(/~,A,+l) is a weak stationarization of 
tp(/~,A~). By Lemma 2.8(2), (A0, U,<~A~) satisfies the Tarski-Vaught condition 
and by Lemma 2.100), tp(/~, U,<,A,)  is the weak stationarization of tp(/~,A0) 
and Ao is obviously good. 

(2) Obvious. 
(3) U,<~A, is good by hypothesis. 
( U ~ A , U ~ G )  satisfies the Tarski-Vaught condition because if ~i E U,A,, 

6 E U~ G, as A~, G are increasing, for some i, a E A~, ~ ~ C,, so we can find 
6' E A~ C_ A as required. 

Let/~ E U , B ,  so for some io, 6 E B~, hence io =< j < a implies: tp(/~, Cj U Aj) is 
a weak stationarization to tp (6, Ai). As UiAt is good by Lemma 2.2(1) for some 
finite B* _C UtAj, tp (/~, U,A,)  does not split over B*. By change of notation we 
can assume B* C_ A~; so tp (b-,At) does not split over B* C_ At (io<--j < a)  hence 
(by Lemma 2.10(1)) tp (/~, C t U At) does not split over B *. As this holds for every 
], tp(b, U t c j  U UtAt)  does not split over B*, hence is a weak stationarization of 

tp (/~, UtAt).  

LEMMA 2.12. Suppose A~, M~ (i < 6) are increasing and continuous, and for 
each i < 6, A, C_ M~, A ,  M~, A,+I is in stable amalgamation, then: 
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(1) A = U,<~A~ is good (note that each A~ is good), and A~, M,  A is in stable 

amalgamation. I f  in addition A,+~ U M~ is a good set for every i then A U M, is 

good as well as Aj U M, ; 

(2) M = U,<~M~ is h-full  over A (h _-> 1%, of course) provided that at least one 

of the following occurs: 

(i) for arbitrarily large i < 6, M~ is h -full over A~ and for every i, A,+~ U M~ is 

a good set, 

(ii) cf 6 => h and for every finite B C_ M and stationary p E S " (B), for 

arbitrarily large i < 6, some sequence from M realizes the stationariza- 

tion of p over A U ]Vii (or some sequence from M~§ realizes the 

stationarization of p over A~+~ U M~ ; this implies the first possibility by 

Lemma 2.10 (4)), 

(iii) 6 is divisible by ~ (as ordinals), for every i < 3, A~+~ U M~ is good, and 

for every i < 6, and stationary type p over some B C_ M~, the stationariza- 

tion of p over A U M~ is realized in M~+~. 

PROOF. (1) By Lemma 2.11(2), for each i < j  < 3, Aj, M~, Aj+, is in stable 

amalgamation; hence by Lemma 2.11(1), for each i, A~, M, A is in stable 

amalgamation. 

Let us prove A is good. Let ~ C A ,  ~ (3~ )  q~[Y;d]: then for some i, d EA~, 
hence for some/~ E iV/,, ~ ~[6, d] and tp(/~,A~) is isolated (/~ exists as A~ is good). 

Now tp(/~, A ) is a weak stationarization of tp (6, A~) (by Definition 2.9(2)) hence 

tp(/~,A) is isolated (by Lemma 2.10(1)) and this proves A is good. 

As for the last phrase of (1) w.l.o.g. 3, A, A~, M~ are countable and let i < 3. 

L e t i ( O ) < 6 a n d w e d e f i n e b y i n d u c t i o n o n L i ( O ) ~ j < 6 ,  M * C M i ,  * _ M j+, atomic 
over M* U Aj+I, and M* continuous, * M ~o) = M,o). If we succeed in carrying out 

the induction the last phrase follows (note that necessarily any set atomic over 
M* U Aj, i (0)= < i < j  =< 6, is atomic over M~'0)U A).  

For j = i(0) and for j limit there are no problems. 
For defining M,*1 it suffices to show that Aj+I U M* is good. Now over 

Aj+1 O Mj there is a countable universal model N (by Lemma 2.2(4) as it is a 

countable good set). By Claims 2.3 and 2.4, it suffices to show that N is universal 

over Aj+~ U M*. So suppose N'  is a countable model Aj+I U M* C_ N'. By the 

stable amalgamation applied to M*, N', Mj, there is an elementary mapping f, 

Dom [ = Mj, [ r M *  = the identity, and for every 6 E Mj, tp(]'(6), N') is the weak 

stationarization of t p ( f ( 6 ) , M * ) = t p ( 6 , M * )  over N'. By Lemma 2.10(1), 

tp (/(6), N') is also the stationarization of tp (6, M*) over N', hence tp (f(~), M* U 

Aj+~) is the stationarization of tp(t~,M*) over M* U Aj+~. However by Lemma 
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2.10(4), for 6 ~Mj ,  tp(6,M* U Aj+,) is the stationarization of tp(6 ,M*) over 

M~ U Aj. , ,  hence tp(6,M* U A,+,) = tp(f(tT),M* U At+,). So f - '  U idAj+, is an 

elementary mapping and let go be an elementary mapping extending it with 

domain f ( M j ) U  N', so go[(M* U Aj+,) is the identity and Mj IJ go(N') is an 

atomic set, hence there is a countable model N", Mj U g(N')  C_ N", hence N" can 

be embedded by some g~ into N over M~ U Aj. Now gogl embeds N'  into N over 

My U Aj+~, so N is really universal over M* tO Aj+~. 

(2) The proof splits into three cases, according to which of the three 

alternative hypotheses hold. 

First Case: (i) holds. 

So let /5 E M, p E S"  (/~) be stationary. So for every large enough i, /~ ~ M~. 

Hence by the hypothesis, for some i, b @ M~, M~ is A-full and by part (1) A U M~ 

is a good set. So the dimension of p for (A~, M~, M~) is > A (as M~ is A-full over 

A~). Now, as mentioned above, the triple A~, M~, A is in stable amalgamation, 

hence by Lemma 2.10(3) the dimension of p for (A,M~ U A,M~) is ->_ A. By a 

hypothesis, M~ U A is good, hence by Conclusion 2.5(2) the dimension of p for 

(A, M, M~) is = A and by monotonicity the dimension of p for (A, M, M)  is at 

least A. 

Second Case: (ii) holds. 

Let /~ E M, p E sm (/~) be stationary, C C M, I C I < A. As cf 8 => A, for some 

i < 8, C U 6 C M~, so by the hypothesis, for some j, i < j < 8, and the stationar- 

ization of p over A U M r is realized in M by some t~; so ~ realizes the 

stationarization of p over A U C U/~, so we finish. 

Third Case: (iii) holds. 

If cf 8 => A the conclusion follows as we proved Lemma 2.12(2) (ii). So suppose 

cf 8 < h ,  but 8 is divisible by A, hence for every regular g < A ,  ( V a < 8 )  
(~ + g < 8 ) .  

Now if ff < 8 is a limit ordinal, by Lemma 2.1:2(2) (ii) M~ is (cf ff)-full over A~. 

Let g =< A be regular, then for every a < 8, M~§ is g-full  (by the last sentence, 

remembering a + g < A) so by Lemma 2.12(2) (i) Ma is g-full over A. As this 

holds for every regular g _-< ~., clearly M8 is A-full over A. 

As a demonstration of our methods we shall now give a new proof of the result 

from [11]. 

CONCLUSION 2.13. (1) There exists a model M E K such that IIMJl = N2. 

(2) For every M E K of cardinality tt~ there is a model N E K such that 

M ~  N and [Nit = ~ 1 -  
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PROOF. (1) By an elementary chain argument it clearly follows from (2); 

notice that K is closed under union of elementary chains. 

(2) Let {Ms : a < to~} be an increasing continuous elementary chain of counta- 

ble models from K such that M = U . . . .  M~. We shall get the model N as a 

union of an increasing continuous elementary chain of countable models of 

length w~. Define this chain {N~ : a < w~} by induction on a such that M,,, N~, M 

is in stable amalgamation. For a -- 0, by Theorem 1.1(v) there is N~, E K such 

that M,, ~ N~',. By the remark after the proof of Lemma 2.2 Mo is good, and by 

Lemma 2.10(2) there is an automorphism f (of ($) such that f r M ,  = id, Dora 

f = N~, and Mo, f(N[~), M is in stable amalgamation. By the requirement 

N[~e'M,, it is clear that f(N[~)ff2M; finally define No=f(N[~).  For a = 3 limit 

ordinal, define No = U~<~N~ and the induction assumption is satisfied by 

Lemma 2.11(3) and Lemma 2.12(1). For a =/3 + 1, as N~ U M~+, is countable 

and atomic choose a countable atomic model M[~ _D N~ U M~+~ and act on M[, as 

we have done before for N~ and get N, = N~+~ ~_N~ countable. Now N = 

U . . . .  N~ is an atomic elementary extension of M of cardinality 1~, and it is a 

proper extension of M since in the first stage we took No< N which is not 

contained in M. 

REMARK. It is tempting to try to repeat the proof of the last conclusion for 

higher cardinalities, i.e., to prove existence of a model of cardinality ~3, for 

example. But unfortunately we cannot do this by the same proof; there we used 

the fact that the sets M,+~ U N~ (a < w~) can be extended to a model, and this is 

followed from the countability of the models (by the No-amalgamation property 

of K). 

In the following sections (to be published soon) we shall prove existence of 

models in higher cardinalities by assuming additional assumptions on K which 

will imply the goodness of more sets. 
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